
agriculture

Article

Experimental Study of Disc Fertilizer
Spreader Performance

Artur Przywara 1 , Francesco Santoro 2,* , Artur Kraszkiewicz 1 , Anna Pecyna 3 and
Simone Pascuzzi 2

1 Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences
in Lublin, 20-033 Lublin, Poland; artur.przywara@up.lublin.pl (A.P.); artur.kraszkiewicz@up.lublin.pl (A.K.)

2 Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A,
70126 Bari, Italy; simone.pascuzzi@uniba.it

3 Department of Technology Fundamentals, University of Life Sciences in Lublin, 20-033 Lublin, Poland;
anna.pecyna@up.lublin.pl

* Correspondence: francesco.santoro@uniba.it; Tel.: +39-0805442474

Received: 25 August 2020; Accepted: 8 October 2020; Published: 12 October 2020
����������
�������

Abstract: We report the experimental results of tests aimed at assessing the effects of different settings
on the mean radius of mineral fertilizer distribution using a disc fertilizer spreader. Our aim was to
improve the performance of fertilizer distribution in sustainable agriculture. Three types of mineral
fertilizers with different physical characteristics, commonly used in agriculture, were considered:
urea, calcium ammonium nitrate and ammonium sulfate. A complete randomization method based
on a four-factor experimental model was used to study the influence of the functional and operational
parameters on the mean radius of fertilizer spread. Fixed model analysis of variance showed that
fertilizer type, vane configuration and disc angular velocity explained 91.74% of the variance of the
spread mean radius, while linear multiple regression analysis highlighted that the fertilizer dust
fraction and disc angular velocity had an overall effect of 82.72%, the former showing an inverse
correlation as high as 72.77%.

Keywords: mineral fertilizers; centrifugal spreading; spatial distribution

1. Introduction

The most common method for distributing dry mineral fertilizer is with a fertilizer spreader.
In a sustainable framework, economic and political aspects also have to be considered in order to
achieve the best possible maintenance of environmental and natural resources [1–3]. A sustainable
economy requires the conservation and maintenance of the natural soil environment [4,5], in which
the leading objective must be improvement of soil sorption properties and the maximum possible
increase in humus content, which is influenced among other things by the soil cultivation method [6,7].
Many aspects of this issue depend on the plant cultivation technology, the subsequent processing
phase [8–10] and how biomass used for energy production is stored [11–13]. In each of these areas,
occupational safety is also important and requires farmers to specialize. This increases production
quality, sustainability [14,15] and compliance with local and international regulations [16]. A major
technical problem in agriculture, directly related to increasing production in sustainable agriculture,
is optimization of the construction of agricultural machinery to increase its reliability and efficiency.
Liquid [7] and granular fertilization are both greatly affected by the shape and uniformity of fertilizer
distribution on the soil [17,18]. Fertilizing fields at the recommended doses, adjusted for soil nutrient
content and plant requirements, is of paramount importance for obtaining high-quality crops without
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depleting the environment. Any error in the fertilization phase, such as excessive doses and wrong
proportions of elements, can cause pollution and environmental degradation.

In this framework, mathematical models can be used to improve the performance of agrotechnical
operations [19–22] by testing the different solutions for machinery with the given technical
and operational characteristics. For mineral fertilizer spreaders, basic information on these
characteristics is provided by tests of spread lateral and longitudinal unevenness. Research on uneven
distribution of fertilizers is conducted around the world according to standardized methodological
recommendations [23]. A quality assessment of mineral fertilization is first of all related to the
transverse distribution of the fertilizer on the ground, in which the radius of the spreading field density
plays an important role [24]. The distribution shape depends on three main factors: (i) the technical
and operational characteristics of the machinery; (ii) the physical characteristics of the fertilizers; and
(iii) the environmental conditions in which the process takes place. Regarding the machine construction
characteristics and settings of the spreading discs, parameters like transverse and longitudinal absolute
tilt of the machinery, vane angle and angular velocity are of paramount importance for machine
performance and are hard to set because they depend on many factors, especially the physicochemical
properties of fertilizers and the geometric and kinematic parameters of the discs. Mineral fertilizers
used in agriculture have very different physical properties, which makes computer-aided numerical
simulations necessary to develop accurate and reliable spreading tables. In turn, this numerical
approach requires testing to determine the relationship between the specific parameters of fertilizer
distribution and the factors affecting it.

The aim of the present study was to analyze the theoretical kinematic and dynamic aspects of the
spreading process and to assess the role of disc settings that affect the radius of distribution for mineral
fertilizers with different physical properties.

2. Materials and Methods

2.1. Theoretical Considerations

The considered disc fertilizer spreader consists of a single rotating disc having two straight
vanes mounted on it. A hopper having a dosing outlet and a stirrer feeds the disc with the fertilizer.
Usually, the fertilizer is thrown away from the disc-vanes device with a speed ve that ranges between
15–50 m·s−1 with a maximum value that, in some case, can reach 70 m·s−1 with higher speeds related
to wider working widths [25]. The fertilizer particle eject speed is directly related (Figure 1) to the
angular speed of the disc wd and to specific design factors of the spreader itself such as: (i) the disc
radius rd; (ii) the fertilizer feed point radius r0; (iii) the angle between each vane and the corresponding
radius (pitch angle β0) and (iv) the cone angle of the rotating disc.

Taking into account the D’Alembert’s Principle, the motion of a single fertilizer particle is
described by a differential equation which considers all the forces that act on it [25]. Among these
forces, the friction force plays a significant role in the present study. It depends on the particle weight
and on the fertilizer physical characteristics. An increase of the friction force due mainly to an increase
of the friction coefficient between the fertilizer particle and the disc-vanes device, leads to both a lower
eject speed ve and a smaller eject angle θ [25].
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Figure 1. Geometry, kinematics, and dynamics of a spinning disc fertilizer. 
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testing method for a single-disc spreader based on the literature and relevant compulsory standards. 
In particular, in line with EN 13739-2:2011 recommendations [26], the experiment was conducted in 
a suitably equipped indoor laboratory. Wind direction and speed were therefore not recorded. 
Relative humidity was 52.0–57.7% and temperature 13–17 °C in compliance with the said 
recommendations [26]. 

The test area, measuring 167.4 m2, consisted of an array of 176 collection trays, each measuring 
0.5 m × 0.5 m × 0.15 m (length × width × height), arranged in 11 rows and 16 columns, separated from 
each other by 0.5 m (2 in Figure 2). The spreader (Sipma RN 410-Antek, Lublin, Poland) was located 
almost in the middle of the first row, 0.7 m from the right lower edge of the first tray in Column 9 (1 
in Figure 2). The center of the rotating disc was taken as the origin from which the fertilizer range 
was measured. 

The spreader was mounted on an experimental test stand (Figure 3) consisting of a frame, a 
hopper (capacity about 0.09 m3) with a dosing outlet and a stirrer, a disc (diameter 0.43 m, concavity 
angle 6°) mounted 0.67 m from the ground, two electric motors (to drive the disc and the stirrer) and 
controls. The design allowed the parameters, such as the fertilizer feed point on the disc, the angular 
velocity of the disc and the pitch of the vanes, to be readily modified. 

Figure 1. Geometry, kinematics, and dynamics of a spinning disc fertilizer.

2.2. Esperimental Tests

Fertilizer spreading was studied in relation to the mean radius of spread. We developed a bench
testing method for a single-disc spreader based on the literature and relevant compulsory standards.
In particular, in line with EN 13739-2:2011 recommendations [26], the experiment was conducted in a
suitably equipped indoor laboratory. Wind direction and speed were therefore not recorded. Relative
humidity was 52.0–57.7% and temperature 13–17 ◦C in compliance with the said recommendations [26].

The test area, measuring 167.4 m2, consisted of an array of 176 collection trays, each measuring
0.5 m × 0.5 m × 0.15 m (length ×width × height), arranged in 11 rows and 16 columns, separated from
each other by 0.5 m (2 in Figure 2). The spreader (Sipma RN 410-Antek, Lublin, Poland) was located
almost in the middle of the first row, 0.7 m from the right lower edge of the first tray in Column 9
(1 in Figure 2). The center of the rotating disc was taken as the origin from which the fertilizer range
was measured.
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The spreader was mounted on an experimental test stand (Figure 3) consisting of a frame, a hopper
(capacity about 0.09 m3) with a dosing outlet and a stirrer, a disc (diameter 0.43 m, concavity angle 6◦)
mounted 0.67 m from the ground, two electric motors (to drive the disc and the stirrer) and controls.
The design allowed the parameters, such as the fertilizer feed point on the disc, the angular velocity of
the disc and the pitch of the vanes, to be readily modified.
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Figure 3. Disc spreader experimental test stand.

A complete randomization method based on a four-factor experimental model was used, in which
the independent variables were disc angular velocity, vane settings on the disc, fertilizer feed point
on the disc and types of mineral fertilizers. We tested two disc angular velocities of 42 rad·s−1 and
63 rad·s−1, which are the most frequent in practice.

Two vanes, 0.32 m and 0.22 m long, were tested in two configurations: L3 and L0, respectively.
In the L3 configuration, the angles between the two vanes and the imaginary line connecting the fixing
point of each vane was 36◦ in both cases, whereas in L0 the angle was 65◦ for the shorter and 84◦ for
the longer vane (Figure 4).
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Technical solutions used in commercial spreaders conditioned our choice of the point where the
fertilizer was fed onto the rotating disc. We tested two different feed points, both circular with a
diameter of 0.02 m and located 0.1 m above the disc surface. Assuming a polar coordinate system with
the origin at the disc center and the axis coinciding with the Oy axis in a Cartesian coordinate system,
the centers of the projections of the two feed points on the disc had polar coordinates A(0.072 m, 25◦)
and B(0.072 m, 57◦), as shown in Figure 4.

Three mineral fertilizers commonly used in agriculture were tested: (i) urea; (ii) calcium ammonium
nitrate (CAN) and (iii) ammonium sulfate (AS). To assess the influence of the basic physical properties of
the fertilizers on the multiple regression analysis used to evaluate the radius of spread, we determined
the loose bulk density, bulk density after sieving and specific density with an Ultrapyc 1200e automatic
gas pycnometer (Quantachrome- Boynton Beach, FL, USA), as well as the granulometric composition
and the mass of the dusty fractions with an LPzE-2e sieve shaker (MULTISERW-Morek, Brzeźnica,
Poland) in each case (Table 1).

Table 1. Physical properties of the mineral fertilizers.

Property Fertilizer

Urea CAN AS

Bulk density (loose), kg·m3 758 1029 1018
Bulk density (sieved), kg·m3 789 1062 1104

Specific density, kg·m3 1340 1800 1780
Mass powdery fraction (<1·10−3 m) , % 10.350 0.030 52.500

Median diameter d50, 10−3 m 0.830 2.100 0.490

Considering all variables, including the three types of fertilizers, eight different combinations
were tested. Each test was replicated three times to improve the statistical significance.

So that the results could be compared, a constant weight (13 kg) of fertilizer was used in the
tests. The fertilizer flow rate through the dosing outlet depended on its properties (urea: 0.054 kg·s−1,
test duration 241 s; CAN: 0.048 kg·s−1, test duration 271 s; and AS: 0.075 kg·s−1, test duration 173 s).
At the end of each replicate, the mass of fertilizer collected in each tray was weighed with a PX3202/1
OHAUS Pioneer analytical balance. To evaluate the density of the fertilizer within the spreading field,
we considered the mean radius of spread defined below. It should not be confused with the machine
working width, which in the present case was at least as wide as the testing field.

To evaluate the mean radius of spread (R), the following relationship was used [24]:

R =
∑n

i=1

∑m

j=1

mi j∑n
i=1

∑m
j=1 mi j

ri j, (1)

where,

n: number of testing field rows;
m: number of testing field columns;
mi j: mass of fertilizer collected by tray at row i column j of testing field, kg;
ri j: distance between center of tray at row i column j of the testing field and center of disc, m.

A significance level α = 0.05 was set for the multivariate analysis of variance of the fertilizer
spreading mean radius constant model. The coefficient of determination R2 was used to explain the
variability of the dependent variable in the model. A multiple regression analysis with R version 4.0.2
software (R Foundation for Statistical Computing) was used to assess the relationships between the
different variables.
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We used a quadruple orthogonal cross classification model (m = 3) with observations in all
subclasses to obtain an overall picture of the effects of the factors on the fertilizer distribution shape
parameters, based on the following expression:

(
R
)
i jklm

= µ+ FTi + DS j + FPk + VCl + (FT.DS)i j + (FT.FP)ik + (FT.VC)il + (DS.FP) jk + (FP.VC) jl ++(FP.VC)kl + ei jklm

(i = 1, 2, 3; j = 1, 2; k = 1, 2; l = 1, 2; m = 1, 2, 3)
(2)

where,(
R
)
i jklm

: m-th result of calculations of the mean fertilizer spread radius for the i-th fertilizer, the j-th
angular velocity of disc, the k-th point of fertilizer feed onto the disc and the l-th vane configuration, m;
µ: general average of the population of fertilizer spread radius measurements, m;
FT: main effect of the i-th fertilizer;
DS: main effect of the j-th angular velocity of the disc;
FP: main effect of the k-th fertilizer feed point on the disc;
VC: main effect of the l-th vane configuration on the disc;
Ij: interaction effect of the i-th fertilizer with the j-th angular velocity of the disc;
ik: interaction effect of the i-th fertilizer with the k-th fertilizer feed point;
il: interaction effect of the i-th fertilizer with the l-th vane configuration;
jk: interaction effect of the j-th angular velocity of the disc with the k-th fertilizer feed point;
jl: interaction effect of the j-th angular velocity of the disc with the l-th vane configuration;
kl: interaction effect of the k-th fertilizer feed point with the l-th vane configuration;
ei jklm: random experimental error, m.

Coefficient R2 was used to explain the variability of the dependent variables by a constant model;
T-Tukey confidence intervals were used to assess the significance of the differences in individual
parameters. The relationships between the dependent variables (parameters of the average fertilizer
distribution field) and independent variables were described by first-degree multiple regression
equations. Model parameters were estimated using the least squares method [27]. Statistical
verification of the model was carried out by the Fisher–Snedecor F test.

3. Results and Discussion

Mean spread radii are reported as a radar plot in Figure 5. The highest mean radius, 6.76 m,
was obtained with CAN fertilizer, feed point B, angular velocity of disc 63 rad·s−1 and vane configuration
L3. The smallest radius, 2.56 m, was recorded with the AS fertilizer, feed point A, angular velocity
of the disc of 42 rad·s−1 and vane configuration L0. A general increase in mean spread radius was
observed with vane configuration L3 and, as expected, increasing disc angular velocity.

Figure 5 also shows an amplifying effect of changing the feed point from A to B for urea and
CAN, due to their lower coefficient of friction [28] with respect to AS. A lower friction increased the
fertilizer velocity along the vane, increasing the radial velocity and consequently discharge velocity
and discharge angle (Figure 1).

Tables 2–5 show the results of the different analyses. Table 2 reports the results of the analysis of
variance of the mean fertilizer spread radius fixed model based on quadruple classification (fertilizer
type (FT) × disc angular velocity (DS) × fertilizer feed point (FP) × vane configuration (VC)), in which
three replicates were done in each subclass. The independent variables explained 99.48% of the
variance of the dependent variable. In particular, the FP was substantially irrelevant compared to the
other variables (FT, VC and DS), which together explained as much as 91.74% of the variability of the
dependent variable. Likewise, among the two-factor interaction effects, including feed point (FP), only
fertilizer type (FT) × feed point (FP) contributed, albeit very little, to explaining the variability of the
mean radius of fertilizer spread.
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Table 2. Fixed model analysis of variance for the mean radius of fertilizer spread.

Variation DoF Sum of
Squares

Mean of
Squares

F Function
Value Pr > F

Model 14 123.82 8.84 783.26 <0.0001
Error 57 0.64 0.01
Total 71 124.46

R2 = 0.9948
Average mean radius of fertilizer spread = 4.10 m

Standard Estimation Error = 0.103 m
Coefficient of Variation = 0.0248

FT 2 63.44 31.72 2809.03 <0.0001
DS 1 34.24 34.24 3032.2 <0.0001
FP 1 0.01 0.01 0.94 0.337
VC 1 15.92 15.92 1409.65 <0.0001

FT × DS 2 6.16 3.08 272.55 <0.0001
FT × FP 2 0.05 0.025 2.16 0.1241
FT × VC 2 3.02 1.51 133.76 <0.0001
DS × FP 1 0.05 0.05 4.21 0.0448
DS × VC 1 0.89 0.89 79.54 <0.0001
FP × VC 1 0.05 0.05 4.12 0.0471

FT: fertilizer type; DS: disc angular velocity; FP feed point position; VC: vane configuration.

Table 3 shows the T-Tukey confidence intervals for differences in the means based on the same
number of observations and mean square error. All differences in the mean radius of fertilizer spread
proved to be significant.

Table 3. T-Tukey’s multiple confidence intervals comparing the average mean radius of fertilizer spread.

Compared Averages for Average
Value

Number of
Observations

Mean Square
Error

Limit Value
(α = 0.05)

Least
Significant
Difference

Fertilizer type (FT): Urea 4.23 24 0.011 3.40
0.074Fertilizer type (FT): CAN 5.45 24 0.011 3.40

Fertilizer type (FT): AS 3.15 24 0.011 3.40
angular velocity of disc (DS): 42 rad·s−1 3.59 36 0.011 2.83

0.05
angular velocity of disc (DS): 63 rad·s−1 4.97 36 0.011 2.83

Fertilizer feed point (FP): A 4.26 36 0.011 2.83
0.05Fertilizer feed point (FP): B 4.29 36 0.011 2.83

Vane configuration (VC): L0 3.81 36 0.011 2.83
1.86Vane configuration (VC): L3 4.75 36 0.011 2.83
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Since the fixed model analysis of variance for mean radius of fertilizer spread clearly showed
that the feed point did not have a significant influence on the mean radius of fertilizer spread, a linear
multiple regression was performed excluding that parameter. The results are reported in Tables 4
and 5, which give the following regression equation where the estimation errors for each parameter
are reported in brackets. We see that the estimated values of the dependent variable, the mean radius
of fertilizer spread, differ from the empirical ones by an average of 0.103 m.

R = 0.80798− 0.03483·VC + 0.00690·DS + 1.65821·SD− 0.04357·DF± 0.103
(0.47985) (0.00352) (0.00047) (0.23382) (0.00221)

(3)

In Table 4, we observe a considerable difference in average estimation errors in relation to
the different coefficients: while the estimation error of the parameters never exceeded 14%, the
corresponding error for the constant was close to 60%.

Table 4. Model parameter assessment of the linear multiple regression of the mean radius of
fertilizer spread.

Variation Parameter SE F Function
Value Pr > F Partial

Correlations

Constant 0.80798 0.47985 2.84 0.0969 -
VC −0.03483 0.00352 98.1 <0.0001 0.12789
DS 0.00690 0.00047 211.01 <0.0001 0.31543
SD 1.65821 0.23382 50.29 <0.0001 0.00421
DF −0.04357 0.00221 389.04 <0.0001 0.85308

VC: vane configuration; DS: disc angular velocity; SD: specific density; DF: dusty fraction.

Table 5. Analysis of variance for the linear multiple regression model of the relationship between the
mean radius of fertilizer spread and the considered parameters.

Variation DoF Sum of
Squares

Mean of
Squares

F Function
Value Pr > F

Model 4 113.59512 28.39878 175.02 <0.0001
Error 67 10.87144 0.16226
Total 71 124.46656

R2 = 0.9127
Coefficient of Variation = 0.0942

We also see that the dusty fraction of fertilizer has a partial correlation coefficient of 0.85, which
is the highest of all the estimated partial correlation coefficients. This value is so high that the dusty
fraction DF alone is responsible for 72.77% (0.853082

·100) of the variance in mean radius of fertilizer
spread. The second most influential variable was disc angular velocity, DS, which explained 9.95%
(0.315432

·100) of the variance in mean radius of fertilizer spread. Likewise, if we consider the remaining
two variables (specific density (SD) and vane configuration (VC)), we find that their overall contribution
to the variance in mean radius of fertilizer spread was only 1.64%, to which specific density SD makes
a negligible contribution (0.00177%).

In line with the instructions provided with the disc spreader, the coefficient of the dust fraction
(DF) is negative in the regression (Equation (3)), resulting in a decrease in the dependent variable as
the independent variable increases. From a practical point of view, this means that the average radius
of spread decreases considerably with increasing fertilizer dust fraction.
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4. Conclusions

The present study shows, by the fertilizer spread mean radius fixed model analysis of variance,
that the feed point on the disc has a very marginal role in the mineral fertilizer spreading process while
the other functional and operational parameters (fertilizer type, vane configuration and disc angular
velocity) together explain 91.74% of the variance of the dependent variable.

Furthermore, on the basis of linear multiple regression analysis, the main parameters that
determine the mean radius of fertilizer spread are the fertilizer dust fraction and the disc angular
velocity with an overall influence of 82.72%. The dust fraction determines 72.77% of the variance,
confirming its inverse correlation with the mean radius of spread possible with the machine. This
could be a practical indication for farmers, enabling them to focus on the angular velocity setting, once
the fertilizer type has been chosen.

Further tests are underway to acquire better insights into the relationships affecting the mean
radius of fertilizer spread and to evaluate which of the same parameters affect angular spread,
from the point of view of improving the effectiveness of fertilization procedures for precision and
sustainable agriculture.
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