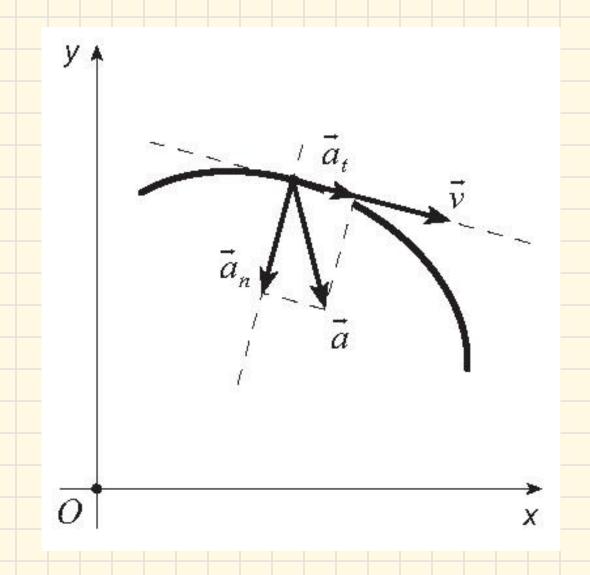
- Consideriamo il moto di un punto materiale lungo una traiettoria curva che, per semplicità, assumiamo piana.
- Il vettore accelerazione ha la stessa direzione della variazione istantanea della velocità così, poiché la velocità cambia nella direzione in cui la traiettoria si incurva, l'accelerazione è sempre diretta verso la concavità della curva.
- Scomponiamo quindi il vettore accelerazione lungo la direzione tangente alla traiettoria, indicata dal versore t e lungo la direzione normale alla traiettoria, indicata dal versore n

$$\vec{a} = a_t \mathbf{t} + a_n \mathbf{n}$$

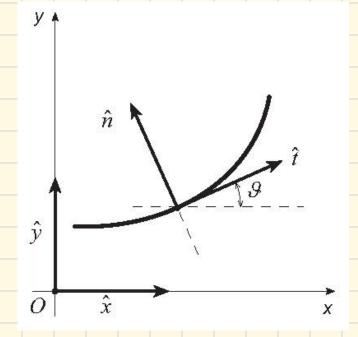
 Chiameremo la componente a_t accelerazione tangenziale e la componente a_n accelerazione normale o centripeta.



 Per ricavare delle espressioni che permettano di ricavare i valori della accelerazione tangenziale a_t e della accelerazione normale o centripeta a_n, ricordando che, se riferiamo la velocità non più in senso "assoluto" ad un sistema di riferimento ma alla traiettoria usando il versore della traiettoria il vettore velocità, v è diretto lungo la tangente alla curva, si può scrivere

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(vt) = \frac{dv}{dt}t + v\frac{dt}{dt}$$

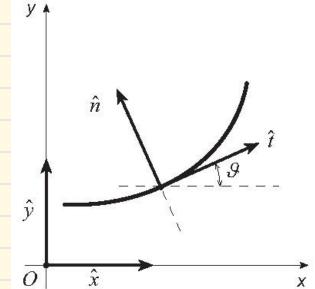
 Fissiamo l'attenzione sulla derivata di t: essa può essere ricavata esprimendo tale versore attraverso i versori degli assi, con riferimento alla figura, risulta infatti:



 $\mathbf{t} = \mathbf{x} \cos \theta + \mathbf{y} \sin \theta$

 Fissiamo l'attenzione sulla derivata di t: essa può essere ricavata esprimendo tale versore attraverso i versori degli assi, con riferimento alla figura, risulta

infatti: $\mathbf{t} = \mathbf{x} \cos \theta + \mathbf{y} \sin \theta$



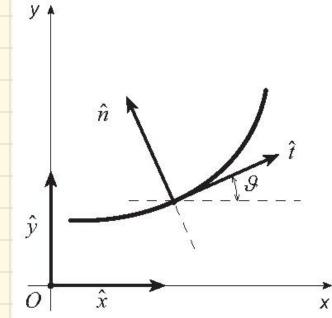
per cui, la sua derivata sarà:

$$\frac{d\mathbf{t}}{dt} = -\mathrm{sen}\theta \frac{d\theta}{dt} \mathbf{x} + \cos\theta \frac{d\theta}{dt} \mathbf{y} = (-\mathrm{sen}\theta \mathbf{x} + \cos\theta \mathbf{y}) \frac{d\theta}{dt}$$

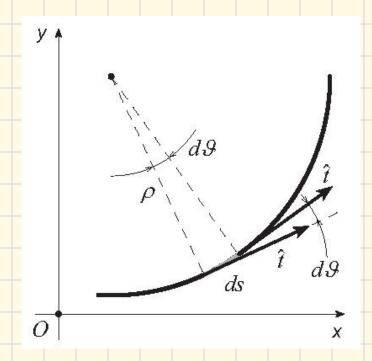
• Con riferimento alla figura, osservando che il versore **n** forma con l'asse x un angolo pari a: $\theta + \pi/2$ si ha

$$\mathbf{n} = \cos\left(\theta + \frac{\pi}{2}\right)\mathbf{x} + \sin\left(\theta + \frac{\pi}{2}\right)\mathbf{y} = -\sin\theta\mathbf{x} + \cos\theta\mathbf{y}$$

per cui:
$$\frac{d\mathbf{t}}{dt} = \frac{d\theta}{dt}\mathbf{n}$$



• Resta, quindi, solo da determinare il valore assunto dalla derivata $\frac{d\theta}{dt}$



 Con riferimento alla figura, se indichiamo con ρ il raggio del cerchio (detto osculatore) che meglio approssima la curva nel punto considerato, raggio che prende il nome di raggio di curvatura, si può scrivere:

$$ds = \rho d\theta \Rightarrow d\theta = \frac{1}{\rho} ds \Rightarrow \frac{d\theta}{dt} = \frac{1}{\rho} \frac{ds}{dt} = \frac{1}{\rho} v$$

• Partendo da $\frac{d\theta}{dt} = \frac{1}{\rho} v$ appena ottenuto e sostituendo nelle relazioni precedenti, si ha:

$$\frac{d\mathbf{t}}{dt} = \frac{d\theta}{dt} \mathbf{n} = \frac{\mathbf{v}}{\rho} \mathbf{n}$$

 l'espressione definitiva dell'accelerazione riferita alla traiettoria diventa, quindi:

$$\vec{a} = \frac{d\mathbf{v}}{dt}\mathbf{t} + \mathbf{v}\frac{d\mathbf{t}}{dt} = \frac{d\mathbf{v}}{dt}\mathbf{t} + \mathbf{v}\frac{d\theta}{dt}\mathbf{n} = \frac{d\mathbf{v}}{dt}\mathbf{t} + \frac{\mathbf{v}^2}{\rho}\mathbf{n}$$

• Partendo da $\frac{d\theta}{dt} = \frac{1}{\rho} v$ appena ottenuto e sostituendo nelle relazioni precedenti, si ha:

$$\frac{d\mathbf{t}}{dt} = \frac{d\theta}{dt} \mathbf{n} = \frac{\mathbf{v}}{\rho} \mathbf{n}$$

- l'espressione dell'accelerazione riferita alla traiettoria diventa: $\vec{a} = \frac{dv}{dt} t + v \frac{dt}{dt} = \frac{dv}{dt} t + v \frac{d\theta}{dt} n = \frac{dv}{dt} t + \frac{v^2}{\rho} n$
- Per cui le componenti tangenziale e centripeta dell'accelerazione sono data da:

$$a_{t} = \frac{dv}{dt}$$

$$a_{n} = \frac{v^{2}}{\rho}$$

- Dalle relazioni precedenti di deduce che :
 - se il modulo della velocità è costante, la componente tangenziale a_t dell'accelerazione è nulla
 - 2. se la traiettoria è rettilinea $\rho \rightarrow \infty$ e, quindi, la componente normale a_n dell'accelerazione è nulla

Velocità e accelerazione angolare

- Supponiamo che il punto materiale si muova con velocità v₀ sulla retta r
- L'angolo 0 che il vettore posizione forma con l'asse X varia con il tempo
- Si possono calcolare velocità e l'accelerazione angolare

$$\omega_{m} = \frac{\Delta\theta}{\Delta t} \text{ (vel. media)}$$

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta\theta}{\Delta t} \Rightarrow \omega(t) = D'\theta(t) \text{ (vel. ist.)}$$

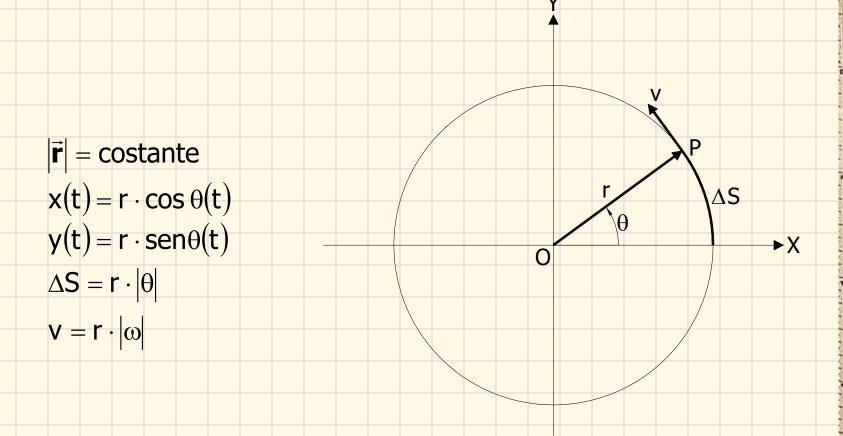
$$\alpha_{m} = \frac{\Delta\omega}{\Delta t} \text{ (acc. media)}$$

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta\omega}{\Delta t} \Rightarrow \alpha(t) = D'\omega(t) \text{ (acc. ist.)}$$

$$r$$

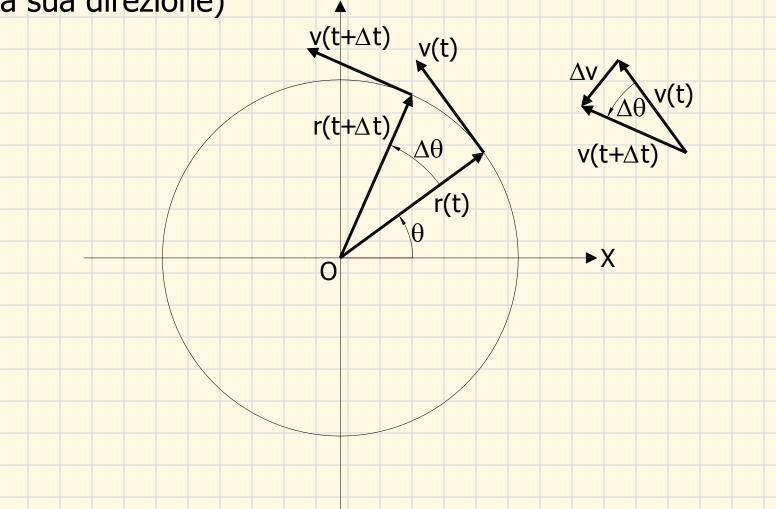
Il moto circolare

 Si definisce moto circolare il moto di un punto materiale che descrive una traiettoria circolare per cui sia, ovviamente, costante il raggio della circonferenza



Il moto circolare uniforme

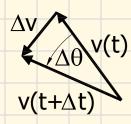
 Si definisce moto circolare uniforme un moto circolare per il quale è costante il modulo della velocità (ma non la sua direzione)



Moto circolare uniforme-Accelerazione

 Calcoliamo l'accelerazione vettoriale media nell'intervallo ∆t. Essa avrà la stessa direzione e lo stesso verso della velocità (se ∆t è maggiore di zero)

$$\vec{a}_{m} = \frac{\Delta \vec{v}}{\Delta t}$$



 L'accelerazione vettoriale istantanea all'istante t si ottiene facendo il limite per ∆t tendente a zero)

$$\vec{\mathbf{a}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\mathbf{v}}}{\Delta t}$$

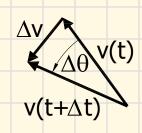
Moto circolare uniforme-Accelerazione

Direzione e verso

Quando Δt tende a zero anche $\Delta \theta$ tende a zero Se $\Delta \theta$ tende a zero gli angoli alla base del triangolo delle velocità tendono a 90°

L'accelerazione è perpendicolare al vettore velocità La velocità è tangenziale e l'accelerazione è radiale e diretta verso il centro (accelerazione centripeta)

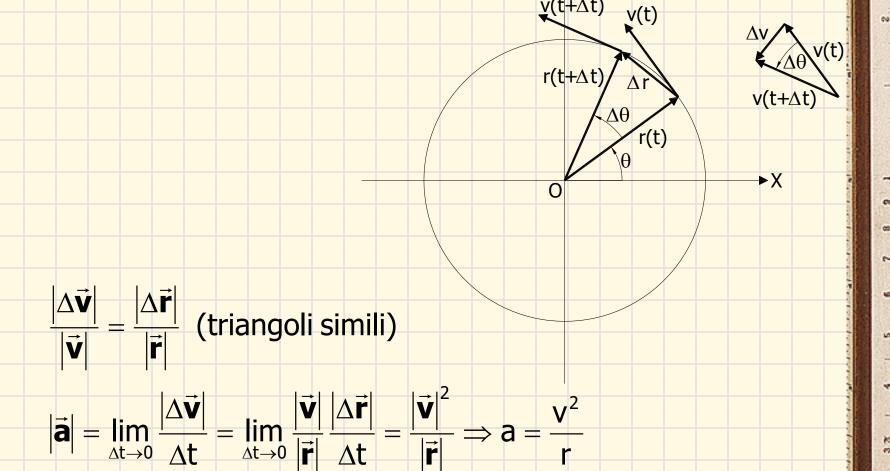
$$\vec{\mathbf{a}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\mathbf{v}}}{\Delta t}$$



Moto circolare uniforme-Accelerazione

Modulo

Il triangolo dei vettori velocità e quello dei vettori posizione sono simili (stesso angolo al vertice)



Università degli Studi di Bari Aldo Moro - Dip. DiSAAT - Ing. Francesco Santoro - Corso di Fisica